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Abstract: This research paper presents a finite element approach for the analysis of composite (two-layer) beams, with a steel bottom 

layer and a concrete top layer. These layers function as a planar composite beam interconnected by connectors. Issues arise at the 

interfaces of different materials (steel and concrete), leading to slip and uplift. The connector element consists of two-directional 

coupled springs: a horizontal spring parallel to the contact surface captures slip, while a vertical spring orthogonal to the contact 

surface captures uplift. The vertical spring activates only if there is separation between the layers; otherwise, contact forces exist. 

The analysis employs a geometrically nonlinear finite element formulation for planar composite structures, considering non-

penetration conditions. The co-rotational method decomposes the element's motion into rigid body motion and small deformations. 

When material behavior becomes nonlinear,  the finite element method based on the displacement-based formulation is commonly 

used. To prevent penetration between the layers, contact resolution methods such as augmented Lagrangian methods with Uzawa 

updating schemes are employed. Finite element models are used to conduct a parametric study to investigate the performance of the 

displacement-based formulation and the influence of using the interaction effect of shear and tensile behavior of the connector 

(coupled connector model) with the non-penetration condition. The performance of the proposed formulation is assessed through 

numerous numerical applications. 

Keywords: Co-rotational, Displacement-based formulation, Non-penetration, Augmented Lagrangian method, Interlayer slip and uplift 

1. INTRODUCTION1 

Over nearly a century, structural composite members 

consisting of semi-rigidly connected layers have been used by 

engineers. The overall behavior of such members strongly 

depends on the stress transfer mechanism between each layer 

which may be accomplished by either bond or shear 

connectors. The aspects of force transmission in composite 

member have been studied analytically and numerically by a 

great deal of research. The first contribution in the study of 

composite beams in partial interaction is commonly attributed 

to [1] who investigated the behavior of a two-layer beam 

considering that both layers are elastic and deform according 

the Eurler-Bernoulli kinematics. In their paper, a closed-form 

solution is provided for a simply supported elastic composite 

beams. Since then, numerous analytical models were 

developed to study and model different aspects of the 

behavior of two-layer composite beams in more complicated 
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situations. To investigate the behavior of elastic two-layer 

beam, several analytical formulations were proposed [2-7] 

Most of the papers on composite beams are focused on the 

effects of interlayer slip while uplift effects have been 

neglected. Only a small number of mathematical models take 

into account both slip and uplift at the interface. The first 

attempt is contributed by [8] who considered linear elastic 

behavior of simply supported composite beam. They 

constructed the governing equation of the system and solved 

it by using finite difference method. Later, [9] developed 

discrete shear connection model to perform an ultimate state 

analysis of composite beam by taking into account the effects 

of uplift at the steel-concrete interface. The vertical separation 

(positive uplift) and the compressibility (negative uplift) of 

one layer bearing on the other was considered in [9] by 

imposing the inequality constraint. Then, [10] have tackled 

the uplift problem at the interface of two-layer beam in a 

different way. They integrated the contact algorithm in the 
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model to solve the non interpenetration between the layers. 

On the other hand, more recently, [11] verified the 

effectiveness of uplift-restricted and slip-permitted 

connectors in alleviating crack formation in the negative-

moment region of steel-concrete composite beams and 

improve the engineering adaptability of connectors, this paper 

proposes a modified uplift-restricted and slip-permitted 

connector. Static load tests and theoretical analysis were 

conducted on two overhanging beams with connectors and 

ordinary studs to analyze the influence of different stud forms 

on the deflection, crack, and slip in the negative-moment 

region. For the study of the nonlinear behavior of composite 

members, full composite models based on displacement 

interpolation functions with fiber discretization of the cross 

section and uniaxial stress-strain relations of the constituent 

materials, as proposed by [12] for the analysis of composite 

columns under uniaxial bending and [13] under biaxial 

bending. For the connector, Shear stud connectors are widely 

used in steel-concrete composite structures to resist shear and 

tensile loads at the steel-concrete interface. In the literature, 

extensive researches [14-18] have been conducted to study 

the behavior of connectors under static and/or fatigue loading. 

Most of the research works are focused on the shear response 

of the stud connector. The stud connectors under combined 

tension and shear have received more attention in the last 

decades due to the increase of using composite constructions. 

In this point of view, the behavior of stud connector under 

shear loading, tension loading and combination of both are 

presented. 

This research paper presents an in-depth numerical 

modeling for planar two-layer composite beam with partial 

interaction, taking into account longitudinal slip and vertical 

uplift. For accounting those factors, the connectors are 

modeled by the two-directional springs. The horizontal one is 

parallel to the contact surface at the interface of the two layers, 

while the vertical one is orthogonal to the contact surface. The 

horizontal and the vertical springs are used to capture slip and 

uplift effects in the composite beam, respectively. In practical 

term, the penetration between layers (negative uplift) is not 

permitted. This requirement is presented by contact 

conditions which is solved by using contact resolution 

algorithm. This work focuses on material and geometrically 

nonlinear analysis (co-rotational approach): FE formulation 

will be conducted using displacement-based. Moreover, the 

connection model accounts for the interaction between the 

shear and tension force of the connector is proposed and used 

in the FE model. 

The paper is structured as follows: Section 2 outlines the 

methodology, encompassing the analysis of nonlinear 

geometry and material behavior, including the behavior of the 

connector. Section 3 presents the results and discussion, 

providing insights to evaluate the proposed formulation and 

support the conclusions drawn in Section 4. 

2. METHODOLOGY 

The composite beam element with continuous bonding 

comprises numerous unconnected beam elements and 

connector elements. According to [19], their research 

introduced field equations describing the mechanical 

behavior of a shear deformable two-layer composite beam 

with partial shear interaction under large displacements, 

which are solved using the corotational frame method. This 

approach is primarily based on the kinematic assumption that 

displacements and rotations may be arbitrarily large, while 

deformation remains small. To account for the nonlinear 

behavior of materials, a displacement-based formulation is 

presented. 

 

2.1 Local linear element 

• Displacement field 

The displacement field of a planar composite beam 

consists of two axial translations ua and ub in x-direction, two 

vertical translations va and vb in y-direction and two rotations 

θa and θb around z-axis. The degree of freedom of the planar 

composite beam element without rigid body mode is: 

       i i i i i i j j j j j j

b b b a a a b b b a a a
= , , , , , , , , , ,u v u v , u v u v     q           (Eq. 1) 

where the subsrciptions a and b represents steel and concrete 

layer, respectively (i  = a,b).  

• Interlayer slip and gap 

 

Slip is the difference of horizontal displacement between 

the concrete layer and steel layer at the interface. Because of 

the deformed cross-section, the terms of rotations of both 

layers are added into the expression of slip as following: 

( )b a a a b b
=s u u h h − + +                    (Eq. 2) 

in which 
a

h  and 
b

h  are the distance between the centroid of 

both layers a and b, respectfully. 

 

Gap is the difference of vertical displacement between the 

concrete layer and steel layer at the interface: 

 

b a
=g v v−                                (Eq. 3) 

The combination of an unconnected composite beam 

element and two connector elements results in a connected 

composite beam element. The stiffness matrix was presented 

in [20]. 

 

2.2 Corotational framework 

As mentioned earlier, the co-rotational method is adopted 

to take into account the geometric non linearity. This 

approach is a priory based on the kinematic assumptions that 
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the displacements and the rotations may be arbitrarily large, 

but the deformation is small. The advantage of using the co-

rotational approach is that the geometrically linear finite 

element formulation can be reused and automatically 

transformed into a geometrically nonlinear formulation. 

• Beam kinematics 

The co-rotational description of the kinematic of a 

deformable body assumes that the motion of a beam element 

can be decomposed into a motion relative to a rigid frame, that 

follows the element as it deforms, and the rigid body motion 

of the frame. In finite element implementations, this 

decomposition is performed by defining a local reference 

attached to the element. 
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Fig.1. Co-rotational kinematics: slip and gap 

The origin of the co-rotational frame is taken at the node 

ai which corresponds to the centroid of the lower layer cross-

section, see Fig.1. The rigid rotation of the xl axis, a, is 

obtained by using the geometrical relation in Fig.2.  
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Fig.2. Initial and deformed configuration 

• Element formulation 

Once the relationship between local and global variables 

is established, the rigid body motions can be removed from 

the element displacement field. This can be achieved by 

calculating the local displacements and it was described in 

[20]. 

• Equilibrium equation 

Consider a composite beam element subjected to external 

forces consisting of a distributed load py on the upper layer in 

the y-direction and nodal external forces Ql at the two end 

nodes of the element, see Fig.3. 
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Fig.3. Nodal forces in composite beam element without rigid 

body mode 

 

Let δql be a vector collecting all virtual displacements of 

the end nodes. The virtual work principle for the composite 

beam element can be written as: 

 

 a a b b

T

b y

= d d d

d 0

a b sc sc

La b

l l

L

sD gV x

v p x

      

 

 

  −  + +

− − =

  

 q Q

(Eq. 4)  

where σa and σb are the axial stress on the lower (
a

 ) and 

upper area (
b

 ), respectively. Dsc and Vsc are the shear and 

vertical uplift force, respectively, in the connection. 

2.3 Displacement-based formulation 

The displacement-based (DB) formulation is a method 

used in structural analysis, particularly in finite element 

analysis (FEA). It is derived from the equilibrium equation by 

considering the displacement fields as the primary unknowns. 

It should be noted that the displacement fields are 

approximated between the element nodal degrees of freedom 

using shape functions. The displacement fields d can be 

expressed as a function of nodal displacement q as:  

 =(x) (x)d a q                                    (Eq. 5) 
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Where 
T

= , ,
u v u vb b a a

(x) (x) (x), (x) (x)  a a a a a is the shape 

function matrix and q is expressed in Fig.4. and as follows: 
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Fig.4. Displacement degrees of freedom 

The sectional deformation vector e(x) in  −d e = 0

is related to the nodal displacements by: 

(x) (x)d = B q                                    (Eq. 6) 

in which (x) (x)= B a , e is the vector collecting the 

generalised strains, given by:  
T

, , , , ,
a a b b

s g   d = and 
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2.4 Non-penetration condition 

The two layers of the composite beam element, initially 

in contact over the element length, may partially separate 

(vertical uplift) or bear (contact) from one to another under a 

particular loading condition. To solve the contact problem, 

several resolution methods are available, see among others 

[21-22]. The non-penetration condition between the layers 

imposes that: 

= 0
b a g

g(x) v (x)- v (x) = (x) a q               (Eq. 7) 

where 
g v vb a
(x)= (x)- (x)a a a . To take into account the non-

penetration condition, the augmented Lagrangian term is 

added to the virtualwork principal as: 

T T T= 0
g g g

( ) ( )+ (x)+ p (x) (x)      = q q q a a a q     (Eq. 8) 

where   is the so-called Lagrangian multiplier and p is a 

penalty parameter. Newton–Raphson method may be used to 

solve the nonlinear equation (Eq. 8) for a fixed known 

Lagrange multiplier  by following the so-called Uzawa 

updating scheme. 

2.5 Behavior of connector 

Shear stud connectors are widely used in steel-concrete 

composite structures to resist shear and tensile loads at the 

steel-concrete interface. In the literature, extensive researches 

[14-17] have been conducted to study the behavior of 

connectors under static and/or fatigue loading. 

• Shear behavior of connector 

The shear behavior of connectors, such as headed studs 

or welded shear connectors, depends on the cross-sectional 

area of the stud shank and the ultimate strength of the stud 

material. Some existing shear strength formulations for a 

shear stud connector are evaluated herein [15,23,24]  

,
= 0.725

u Kim sc u
D A f                       (Eq. 9) 

( )2 2

,EU 4
= min 0.29 ,0.8 / 4

u cm c u
D d E f d f    (Eq. 10) 

,AASHTO
= 0.5

u sc cm c sc u
D A E f A f           (Eq. 11) 

where: d the stud shank diameter [mm], 
sc

A is the cross area 

of the stud shank [mm2], 
c

f  is the concrete compressive 

strength [MPa], 
cm

E is the Young’s modulus of concrete 

[MPa], 
u

f is the ultimate strength of the stud material [MPa]. 

• Tensile behavior of connector 

The pull-out strength, also known as the tensile strength, of a 

stud connector represents the maximum amount of force that 

can be applied to the connector before it fails. It measures the 

connector’s resistance to pull away from the anchored 

material. It is determined by various factors, including the 

material, properties and dimensions of the connector, and the 

method of installation [25]. The pull-out failure of a shear stud 

connector is avoid if dh <1.71d: 

, , 2 ,,
8

u kips c p c ksibrg inches
V A f=                   (Eq. 12) 
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where:  ( )2 2

2 2 2, h,4brg inches inches inches
A d d


= −  

 
,P

1.4
c

 = . The unit of forces, length and strength 

are in kip, inches and ksi, respectively. 

• Coupled connector model 

Takami et Al, 1999 [18], proposed an circular 

interaction relation under the form of Eq. 13 as below:  

2 2

1sc sc

u u

D V

D V

   
+    

   
                       (Eq. 13) 

The model of the coupled stud connector shown in Fig. 5 

is then utilized in our presented finite element model with the 

return mapping algorithm, which includes a yield criterion 

that accounts for the interaction between the shear and tensile 

behavior of the connector. 

1

Dsc/Du

Vsc/Vu

1  

Fig.5. Interacted forces in stud connector proposed by [18]. 

3. RESULTS 

The developed finite element models, incorporating the 

nonlinear behavior of concrete, steel, and connectors, will be 

assessed by comparing their results with experimental tests 

and analyzing the adoption of the DB method. Additionally, 

the influence of coupled/uncoupled connector model is 

illustrated. 

3.1 Simply supported composite beam PI4 (Validation)  

The composite beam PI4, which was studied by [26] has 

5m length with a simply supported condition. 

This composite beam is constructed by 800 mm×100 mm 

concrete slab and IPE400 steel beam with the geometrical 

details in Fig.6. The parametric study, the behavior of 

materials are following the utilization in [26]. The analysis of 

beam PI4 is performed using the displacement-based with 

various number of elements and it is presented in this chapter 

and implemented into co-rotational framework Section 2.2. 
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Fig.6. Simply supported composite beam PI4 [26]  

Fig.7. Comparison of load-vertical displacement 

 

Fig.8. Slip distribution of beam PI4 at P=297 kN 
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Fig.9. Uplift distribution of beam PI4 at P=297 kN 

Fig.7 presents the relationship of applied force-vertical 

displacements at mid-span of composite beam with different 

computations as follows: 

• EXP-PI4: results by experimental data of Abdel Aziz 

[26]. 

• FE1-PI4-2E, FE1-PI4-4E, FE1-PI4-8E, FE1-PI4-

12E: results by displacement-based formulation 

using 2, 4, 8, 12 elements, respectively. 

• FE2-PI4: results by mixed formulation by [20] 

It can be seen that all formulations give essentially the 

same force-displacement curve in elastic range. Exceed that, 

we observe that more elements are required when the 

displacement-based formulation is used. In the results shown 

by Fig.7, it requires 8 or 12 elements for displacement-based 

formulation to get a satisfactory result. Furthermore, the slip 

and uplift distribution is also validated with existing model 

results, as shown in Fig.8 and Fig.9. Fig.9 can be adjusted 

using a contact algorithm at the element level, where very 

small and negligible penetration was observed along the 

interface of the beam. It is reasonable to expect some uplift 

when treating non-penetration conditions. 

3.2 Continuous composite beam CTB1 

In this example, we will consider the two-span-

continuous composite beam CTB1 (4m and 5m long) 

designed and tested by [27]. We denote the 4m and 5m span 

of the beam by short and long span, respectively. The beam is 

subjected to a single concentrated load P at the middle of the 

short span.  

The cross-section of CTB1 consisted of an IPE200 steel 

beam and a concrete slab 800mm × 100mm as depicted in Fig. 

10. 
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Fig.10. Continuous composite beam CTB1 

 

Fig.11. Slip distribution at P=143 kN 

We observe that both models provide an ultimate load of 

143 kN. At this load level, we observe a significant difference 

between the vertical displacements obtained with the coupled 

and uncoupled models. This can be explained by the 

distribution of slip and uplift at P = 143 kN depicted in Fig.11 
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and Fig.12. As expected, in Fig.11, the coupled connector 

model provided larger slip value than the uncoupled one. This 

is because the strength of the connector is reduced in the 

coupled model. 

 

 

 

 

 

 

Fig.12. Slip distribution at P=143 kN 

This is because the strength of the connector is reduced 

in the coupled model. Besides, as illustrated in Fig.12, the 

contact algorithm handled the non-penetrated condition very 

well, resulting in a maximum penetration of 0.0015mm which 

is very small and negligible. The results indicate that there is 

no difference in slip and uplift when the imposed load is 

within the elastic range. However, they become significantly 

different in plastic domain. 

4. Conclusion 

This research presents the development of displacement-

based formulations for the nonlinear analysis of two-layer 

beams, taking into account the non-penetration condition. 

Node-to-node contact conditions are imposed by augmented 

Lagrangian conditions in these models. The computations 

employed displacement-based formulations with geometrical 

nonlinearity, yielding good agreement with both experimental 

results and existing models' results. However, the 

displacement-based formulation required a larger number of 

elements to obtain satisfactory results. Another significant 

aspect pertains to the replacement of the concrete layer. In the 

model of the connector, the coupled and uncoupled models 

exhibit a good agreement during the elastic deformation stage. 

However, beyond that stage, the connector behaves more stiff 

with the uncoupled connector model. 
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